Intelligent Adaptive Mobile Robot Navigation
نویسندگان
چکیده
This paper deals with the application of a neuro-fuzzy inference system to a mobile robot navigation in an unknown, or partially unknown environment. The final aim of the robot is to reach some pre-defined goal. For this purpose, a sort of a co-operation between three main sub-modules is performed. These sub-modules consist in three elementary robot tasks: following a wall, avoiding an obstacle and running towards the goal. Each module acts as a Sugeno–Takagi fuzzy controller where the inputs are the different sensor information and the output corresponds to the orientation of the robot. The rule-base is generated by the controller after some learning process based on a neural architecture close to that used by Wang and Menger. This leads to adaptive neuro-fuzzy inference systems (ANFIS) (one for each module). The adaptive navigation system (ANFIS), based on integrated reactive-cognitive parts, learns and generates the required knowledge for achieving the desired task. However, the generated rule-base suffers from redundancy and abundance of data, most of which are less useful. This makes the assignment of a linguistic label to the associated variable difficult and sometimes counter-intuitive. Consequently, a simplification phase allowing elimination of redundancy is required. For this purpose, an algorithm based on the class of fuzzy c-means algorithm introduced by Bezdek and we have developed an inclusion structure. Experimental results confirm the meaningfulness of the elaborated methodology when dealing with navigation of a mobile robot in unknown, or partially unknown environment.
منابع مشابه
Mobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 30 شماره
صفحات -
تاریخ انتشار 2001